Five Professional Lessons from Curie’s Scientific Career

MARIA SALOMEA SKLODOWSKA , later dubbed Marie, was a Polish girl who was passionate about learning science. But as she passed high school with a gold medal, two obstacles stood in her way to higher education: first, university education for women was forbidden in Poland (occupied under the Russian Empire in late nineteenth century); secondly, her father– a teacher himself– though encouraged her academic interests, did not have enough money to support her education overseas.

Marie’s sister Bronya faced similar circumstances. Though Polish women were not permitted to join universities under the Tsar rulers, the Sklodowska sisters would never let go of their insistence that they deserved the same rights on education as their male counterparts. However, there was no easy way to achieve their ambitions. 

Having no apparent outlet for her scientific zeal, Marie decided to carry out her own higher education secretly. In the mornings, she would earn her living by working as a child governess for wealthier families; she consumed her evenings studying books on physics, chemistry, and mathematics and occasionally attending laboratory practicals at an underground educational academy called “Flying University“. 

Soon afterwards, the Sklodowska sisters had hatched an audacious plan: Marie’s savings from her tutoring job would allow Bronya to go to France and study medicine; after her graduation and employment, Bronya was supposed to support Marie’s university studies in Paris. This arrangement  continued for nearly five years during which Marie kept earning and saving money for herself and Bronya.  

Eventually, in November 1891, Marie herself landed in Paris to study science at the Sorbonne – the most prestigious university of Paris. After several years of persistent struggle, her dream for higher education had finally come true. 

Lesson One: Choose your struggle and remain persistent with it. Suppression of female education and her poor financial background seemed enough to convince a young Polish girl to give up her ambition on learning science but Marie didn’t relent. She chose a quest for herself, a struggle spanning five years – five years of toil and anticipation – finally winning a triumph, not only for her but also for her sister. 

Marie’s struggle didn’t end with enrollment at the Sorbonne. It was the beginning of another quest, another river to swim through. Living alone in a low-rent, freezing garret, she still had to grapple with hardships. But her passion for science was oblivious to any inconvenience. Giving in to obstacles was an act unknown to her. In her own words: 

“Life is not easy for any of us. But what of that? We must have perseverance and above all confidence in ourselves. We must believe that we are gifted for something and that this thing must be attained.”

In the summer of 1893, aged 26, Marie finished up as top student in her masters of physics degree course. In addition, she received industrial funding to investigate the relationship between steel composition and its magnetic properties, a research aimed at finding ways to make stronger magnets. As if this achievement was not enough to satisfy her scientific gusto, she passed a masters in mathematics with distinction the following year. As Marie once reflected:

“One never notices what has been done; one can only see what remains to be done.”

Lesson Two: Don’t let your achievements retard your career progression. Marie had already accomplished a great deal in her scientific career; far greater than anyone could have imagined for her. But she continued her ambition towards scientific pursuit inexhausted, unabated.

In 1895, Marie married Pierre Curie, a highly respected industrial scientist and inventor. Marie Sklodowska became Marie Curie. From financial troubles to professional interests, the couple had much in common. Consequently, their union turned into a collaboration that won them many laurels. In 1898, they discovered two new elements: Marie named one of them Polonium in the honor of her beloved homeland Poland; the other element was dubbed as Radium.

1903 was a special year for the Curies. Sorbonne awarded Marie a Ph.D. degree for her scientific achievements and the same year, she shared  a Nobel Prize in physics with her husband Pierre and Henry Becquerel. Once again, Curie had to experience prejudice for the simple fact of being a woman. The Nobel Committee had originally omitted Marie but Pierre insisted that his wife deserved the honor equally. Marie Curie became the first woman to win a Nobel Prize. 

Lesson Three: Look out for a sincere teammate with whom you can share common career goals. Pierre Curie was not only a collaborator but also Marie’s life partner. Together, they conquered many battles that they couldn’t have fought in isolation. However, it is not a one way affair; support and recognition must be reciprocated by both sides. 

Money from their Nobel Prizes and the accolades that followed made life easier for the Curie couple. They could now take care of their two daughters and afford a laboratory assistant. Meanwhile Pierre took the Chair of Physics at the Sorbonne. But then the unthinkable happened. In 1906, Pierre Curie got killed in a horse-drawn carriage road accident. Marie lost her life partner and collaborator. 

Desolate and distraught, Curie soon turned her attention towards work. After Pierre’s death, she was offered to replace him as the Chair of Physics which she accepted. In 1911 , she won another Nobel Prize in chemistry for her contributions to the field of radioactivity, making her the first to receive two prizes in two different fields. 

At every corner of her life, Curie was breaking the mold: she was the first woman to win a Nobel Prize, the first female professor at the university of Paris, and the first laureate to win two prizes in two different sciences. 

Lesson Four: Don’t try to be the best, try to be the first. While there could be arguments over the significance of Curie’s discoveries, her achievements as the first woman are certainly undisputed.If you want to stand out in your profession, look out for the untapped potential rather than joining and trying to win a rat race. 

While she held the notion that radioactivity could be used for the benefit of mankind, worldwide recognition of Curie’s achievements gave her leverage to convince the French authorities to fund a new research center. The Radium Institute – now Curie Institute – was established in 1914, but before the institute could commence any earnest work, First World War erupted.

During the course of war, Curie decided to put her scientific knowledge to the service of humanity. With the help of her seventeen years old daughter, Irene, she set up mobile radiography medical units – came to be known as “petite Curies”– near battle lines to facilitate X-rays of wounded soldiers. By the end of the war, around one million injured soldiers had passed through her medical units. 

Convinced that radioactive rays could treat cancer tumors, Curie toured across the United States in 1921 to publicize a fund raising campaign so that she could get one gram of Radium for researching its medical applications. On May 20, in the Blue Room of the White House, President Warren G. Harding presented her one precious gram of Radium which she brought to France as a gift from America. 

Under Curie’s supervision, the Radium Institute in France went from strength to strength and made many useful discoveries during 1930s. Irene, her own daughter, followed her trail-blazing footsteps; working at the institute, Irene Curie and her husband Fredric won the 1935 Nobel Prize in chemistry for creating an artificial radioactive element. The Curie Institute continues to do important research work till today.

 Lesson Five: Think about your professional legacy. What was Marie Curie’s legacy: a couple of new elements, numerous Nobel Prizes, perhaps no. Curie left behind a better world – for women, for Polish people, and for scientists – than she had been born into. Leave your legacy: a better place for those who follow you.  

Marie Curie died in 1934 at an age of 66 years. It is widely believed that exposure to Radium- her most promising find- had caused an irreparable damage to Curie’s health, eventually taking her life. 

26 thoughts on “Five Professional Lessons from Curie’s Scientific Career

  1. That’s certainly true. However, today we are much more aware about the effects of radiation. I wonder she could have achieved more had she been more careful with the stuff she was handling. Thanks for stopping by.

    Liked by 2 people

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s