Five Professional Lessons from Watt’s Inventive Career

THE BOY SPENT HIS DAYS watching ships arriving back to the port. One day, thanks to his inventive genius, ships like these would be powered by engines rather than sails. Belonging to an accomplished Scottish family, young James Watt excelled at mathematics, science, and engineering at high school, but his language skills were less impressive.

At eighteen, following the death of his mother, and a ship sinking that placed a heavy financial burden on his family, James gave up his plans to join university in Glasgow. Instead, he chose to train, first in Glasgow and later in London, as a scientific instrument maker. However, odds seemed against him. 

After spending two weeks in London and visiting various shops for being employed as an apprentice, young Watt realized that the rules of the trade were a significant obstacle in his way: the only employment was for fully-trained instrument makers or trainees serving seven years apprenticeships; clearly, he did not fall into any of the two categories. 

Watt had his first stroke of luck as he met John Morgan– an instrument maker in the heart of London – who was not so strict with rules. As Morgan assessed Watt’s extraordinary capabilities with mechanical work, he agreed to shorten the apprenticeship period to one year rather than seven on the conditions of a meager stipend. Likewise, Watt did not disappoint Morgan. 

Within two months, James Watt was able to surpass another apprentice who had been there for three years. Nonetheless, it was no easy task; covering seven years of practice into one year required him to work for ten hours a day in a cold workshop. With the little money he received, he had to maintain long hours on little food. Eventually he finished his apprenticeship year successfully and returned to Glasgow as a trained instrument maker in 1756. 

Lesson One: Be ready to work harder and make sacrifices especially when the odds are against you. Don’t expect lucrative rewards in the beginning of your career. When John Morgan offered a tough apprenticeship with little pay to James Watt, the latter took it as a rare opportunity to develop his skills, worked harder, and made personal sacrifices. But as you will find out later in this account, these sacrifices did not go in vain. 

Upon his return to Glasgow, James Watt succeeded in setting up a workshop at the University of Glasgow and started making mathematical instruments for the university labs. As the Mathematical Instrument Maker for the university, he was often consulted for repairing lab equipment. One such repair was about to change the future of mankind for good.

One fine morning in 1763, Professor John Anderson, who used to demonstrate the working model of the Newcomen steam engine in his physics lab, needed the model repaired. James Watt was called for repairing the engine. During the repair, he was astonished to learn how little work the engine was capable of. Realizing that there was an ample room for improving the efficiency of the engine; he decided to take it as a challenge.

Though Newcomen engines were in use for more than 50 years in Britain, no one had found a way to improve them. These engines worked on a simple principle: a jet of steam was used to drive a piston inside a cylinder in one direction; the cylinder was subsequently cooled down with water to bring the piston back to its initial position. The cycle could then be repeated, thereby converting heat into mechanical work. 

Taking into account the low efficiency of the Newcomen steam engine,Watt spent the next two years conducting experiments with water and steam in metal vessels. Eventually, he realized that cooling with water after steam had done its work was the root cause of energy loss and lower output. He redesigned the engine skipping the cooling water injection & inclusion of a condenser intended to collect the condensed steam and make it available for the next cycle. 

By the end of 1765, a 29 year old James Watt had built his first small-scale steam engine featuring a separate condensing chamber and a steam jacket. Winning his first challenge, he had brought the required improvements in the efficiency of the Newcomen engine – the improvements that no one had been able to figure out hitherto. 

Lesson Two: Keep looking for improvement opportunities in your trade, take those opportunities as challenges, and work hard to tackle them. Watt was supposed to repair the laboratory steam engine model but he identified an opportunity in the task, took it as a challenge, and finally won over it. Just like Edison who had not invented the light bulb but improved it for practical viability, Watt’s improvements on Newcomen’s steam engine were no less than a reinvention. 

In 1769, Watt had his steam engine improvements patented but in order to build a practical steam engine, he needed a lot of money. He found a financier in John Roebuck, a mine owner. But this proved to be a brief partnership; four years later, Roebuck went bankrupt and sold his shares to a wealthy manufacturer from Birmingham- Mathew Boulton. 

In 1775, Watt started a highly successful partnership with Boulton. They complimented each other perfectly – it was an excellent combination of Watt’s engineering ingenuity and Boulton’s commercial skills. News of Watt’s super-efficient steam engines spread fast, and as Boulton & Watt engines found their way into ever more applications, the Industrial Revolution kick started. 

Lesson Three: Find a trustworthy partner who can compliment your shortcomings. Watt was a brilliant inventor but the commercial success of his improved steam engine was impossible without the financial support and business genius of Mathew Boulton – this is akin to the fact that Nikola Tesla’s success in the Battle of Currents over Thomas Edison could not have occurred without the support of George Westinghouse. 

Until the mid-eighteenth century, horses were used for most demanding labor. With the advent of the steam engine, machinery began to replace horses for various tasks. However, the transition received major resistance from folks who were skeptical about the efficacy and reliability of machines over horses. In order to market his improved steam engine, Watt had to convince the skeptics. 

Watt understood that the potential buyers of his engines would be inclined to compare the performance of steam engines with that of pony horses. Therefore, he drew a comparison  between the two technologies and claimed that one of his improved steam engine could produce enough power to replace ten cart-pulling horses or ten horsepower. 

The comparison appealed to his potential customers as well as competitors, creating a measure of power known as “horsepower”. Though the scientific unit for power in use today is Watt (in the honor of James Watt), horsepower is still commonly used to indicate power of automotive engines.  

Lesson Four: Speak to your customers in the language they can understand. You might be a technical expert but your customers would be least interested in your technical jargon; they prefer to listen if you have the solution to their problem. Realizing the same marketing principle, Watt presented a convincing comparison of his improved steam engines versus horse carts.

In 1800, aged 64, James Watt retired as a wealthy businessman. Both Watt and Boulton passed their partnership to the next generation. Watt’s achievements were amply recognized during his lifetime: in 1806, he was made the doctor of laws at the university of Glasgow; he became a foreign associate of the French Academy of Sciences in 1814; and he was offered a baronetcy, which he declined. 

While Watt was already a rich old man in his sixties, his inventiveness was still young and alive. Continuing with his research, he came up with a couple of new patents including double-acting steam engine, the rotary engine, the steam pressure indicator, and even a copying machine. The rotary engine was a crucial invention as it enabled to drive wheels rather than the simpler up and down pumping motion of earlier machines. 

Lesson Five: Do not let your passion die with age and achievements. Even after retiring as a wealthy businessman, James Watt continued with his inventions and improvements well into his sixties and seventies. Albert Einstein had a similar ending : while on his deathbed, he was still working on his Unified Fields Theory.

James Watt–the pioneer of industrial revolution– passed away in 1819, aged 83. We still remember him as Watt (the scientific unit of power) as well as whenever the term horsepower is mentioned.

Five Professional Lessons from Edison’s Inventive Career

THOMAS ALVA EDISON– fondly called Al- was the seventh and last among his siblings. Mostly homeschooled, he had developed hearing problems early in his childhood. In his teenage, he became a newsboy, selling newspapers on trains. Though he liked to conduct experiments with chemicals, it didn’t take Edison long to discover his talents as a businessman. By the time he was fifteen, he was publishing and selling his own newspaper called the Weekly Herald

Being around with train stations all the time, Edison became enthralled with telegraphy while watching telegraph operators. Soon he learned telegraphy himself. As a telegrapher, he realized that things could be improved to create new business opportunities for him. On 1st June, 1869, Edison got his first patent for a vote recorder. This small invention was the beginning of something really big. 

Lesson One: Try to recognize your inner talents at an early stage of your professional career. Just like Albert Einstein identified his niche for science at an early age, Edison was already aware of his business acumen as a teenager. Early recognition of your key talents will allow you to channel your time and energy positively towards your career objectives.

In 1876, following the invention and successful sale of his quadruplex telegraph, Edison established the first industrial research lab in Menlo Park, New Jersey – the first of its kind setup for technological innovation. Most of his inventions came from this laboratory, and for this reason, Edison later came to be known as the “The Wizard of Menlo Park”. 

Though Edison is almost always solely credited for his numerous inventions, he had several employees who did the research and development in his lab. Frequently, he would gather his research assistants for brainstorming sessions aimed at resolving problems and bringing about improvements. As his laboratory expanded, Edison gave his assistants shares in various companies associated with his inventions. In time, those assistants, who often complained for being underpaid, would eventually gain direct benefits from the success of those enterprises. 

Lesson Two: Build a team of smart people, interact with them regularly, and motivate them by giving incentives. Edison was notorious for underpaying his employees but he compensated them by offering opportunities to reap the direct benefits of a successful company. This approach could be far more effective for creating a team that owns its work and is motivated to deliver its best output. 

In the summer of 1877, Edison created his “talking machine”. Its technical name was phonograph, and it was an earlier version of a record player. Before long, people started believing that there were magicians sitting in those labs in Menlo Park, Edison being the Chief Wizard. Nonetheless, he made the mistake of restricting his phonograph for business purposes and didn’t push it into entertainment venue, a decision that proved to be a major opportunity loss subsequently. 

The invention of phonograph could be attributed to a particularly useful habit of Edison: he loved working on more than one project at a time, and he would always look out to apply the ideas of one project into someplace else. Consequently, he would move his assistants around different tasks. By the same token, learnings from an improvement project on telephone microphone led to the creation of phonograph. 

Lesson Three: Keep your team members rotating, particularly if your work hinges on innovation and creativity. Just like Edison liked to apply the ideas of one project to other places, cross functional movement of people creates avenues for knowledge sharing and exchange of ideas. Additionally, such movements ensure that certain skills do not remain restricted to certain individuals – a situation that makes an organization dependent on few experts. 

Over 1000 patents hold the name of Thomas Edison but the one which made him a household name is the invention of a light bulb. There is a small correction, however: Edison didn’t invent a light bulb but improved on it. Incandescent lamps were already invented by people like Humphry Davy, James Bowman Lindsay, Joseph Swan etc. However, Edison was the one to create the difference. 

People who had tried their hands over incandescent bulbs earlier went no further than demonstrating how light could be produced from electricity. The brilliance of Edison was to improve the lamp design so that it could be easily manufactured, lasted a longer time, and was cheaper to buy. Edison was not only an inventor, he was a businessman who knew how to turn an invention into a marketable commodity. That was the genius of Thomas Alva Edison.

Lesson Four: Learn to create value for your customers. People who invented incandescent lamps before Edison were not able to turn them into user friendly products. Thomas Edison realized the missing link from business perspective and improved on it so that light bulbs could be successfully marketed.

Thanks to Edison’s design improvements and marketing capabilities, light bulbs were now a reliable and affordable household item. The next step was to make electric power as viable as the bulbs. Edison’s own power system ran on Direct Current or DC which had a significant drawback: DC power plants, having immense losses due to low voltage, couldn’t supply power beyond a one mile radius; there was a large gap in supplying power to everyone.

George Westinghouse, Edison’s competitor, took this void as an opportunity and joined hands with Nikola Tesla– another brilliant inventor, but someone whom once Edison had allegedly mistreated as an employee. Together they went on to bring about an alternative: Alternating Current or AC power distribution system, which depended on high voltages, had the potential to fill the gap left by DC power. However, Edison remained adamant that it was not a workable solution. 

By the time Edison found his judgment fallacious, it was too late. His company had already installed more than hundred DC systems and to change now to AC was absolutely out of question. As Westinghouse took more and more business, Edison was fast losing out. So much so that by 1892, Edison himself had to announce his retirement from his own company.

Lesson Five: Be flexible in your opinions. As it happened with Albert Einstein who did not accept quantum mechanics as a worthy concept, Edison was not ready to admit the superiority of AC power over his DC power distribution systems. Eventually, Edison had to exit the very company he had established through a long and hard struggle. 

With a total of 2,332 patents amassed from his inventions, the Wizard of Menlo Park took his last breath on October 18,1931. Americans extinguished their light bulbs at ten p.m. for a minute as a tribute to the man who had lit America and the rest of the world. 

Five Professional Lessons from Tesla’s Inventive Career

IN THE YEAR 1905, a few construction workers gathered in a small New York village to erect a particularly lofty structure, a 187 feet tall tower. Atop this tower was perched a fifty-five ton dome of conductive metals, and beneath it stretched an iron root system that penetrated more than 300 feet deep into the earth. The structure was named “power tower” and its intended purpose was to bring about a global energy revolution.

The idea in the mind of the tower’s inventor was fairly eccentric – he proposed to conduct electricity through the earth and the sky, enabling a wireless transmission of electric power across large areas of land. Lamentably, the tower was never completed as envisioned by its inventor due to shortage of funds. Eventually, the tower was unceremoniously demolished in 1917 for salvage of the debts that accrued through the project.

The name of the inventor was Nikola Tesla – a generally under appreciated genius to whom we owe a myriad of modern day conveniences. So let us pay a brief homage to Tesla by recounting his illustrious career and learning a few lessons from his professional life.

Born and bred in Croatia, Nikola Tesla possessed a photographic memory and a surprisingly vivid imagination as a child. Despite being a brilliant student, he could not finish his university degree as he got addicted to gambling. Following his father’s demise, he spent next few years bouncing back and forth across several European cities for work and study. But his career took a significant turn as he immigrated to New York City in June 1884 and joined Edison Machine Works.

Though Thomas Edison – a great inventor in his own right – was fairly impressed with Tesla’s diligence and problem solving abilities, the professional relationship between the two was sour from day one. A famous episode goes like this: 

Edison offered Tesla an amount of $50,000 to improve the design of his DC (direct current) power generation plants. Tesla worked day and night on the said improvements and when he demanded the payment, Edison laughed off saying,  

“ When you become a full-fledged American, you will learn to appreciate American humor”. 

Instead, Edison offered a $10 a week raise in Tesla’s salary. Having felt cheated, Tesla immediately quit his job with Edison and left.

Lesson One: Always document your business deals. We have no way to delve into the accuracy of Tesla’s claim about Edison’s mis-commitment however such situations are not uncommon in business dealings. Never ever rely on verbal agreements in professional matters, always get contracts signed and stamped. 

As his time with Edison came to an end, Tesla had many ideas for new motors and electric transmission equipment – ideas that never appealed to Edison. Soon afterwards, having tried and failed with a brief partnership named Tesla Electric Light & Manufacturing, Tesla found him digging ditches for $2 per day. He felt miserable and depressed about his chances in this new country. However, it proved to be a temporary trial. 

Before long, Tesla and his promising ideas caught the attention of the right people. In 1887, he joined hands with A.K. Brown, a manager for the Western Union Telegraph Company; together they founded the Tesla Electric Company with the specific intention of developing Tesla’s AC induction motor. By 1891, Tesla had obtained a total of 40 patents related to his induction motor. 

Meanwhile George Westinghouse, a powerful businessman,  who was looking to compete with Edison’s DC motors realized that future belonged to Tesla’s superior AC motors. The partnership between Tesla and Westinghouse marked the beginning of what came to be known as “War of Currents” i.e. to establish the commercial viability of Tesla and Westinghouse’s Alternating Current over Edison’s Direct Current.

In 1893, when George Westinghouse was awarded a contract for the electrification of world’s fair to be held in Chicago, he selected Tesla as the lead engineer for the project. Being an unconventional inventor, Tesla wanted to demonstrate the practicality and superiority of his AC technology over Edison’s rival DC electric power. 

On the day of the event, the fairgoers were amazed to see wireless lamps connected to an AC power electric field. Tesla had not only eradicated the publicized safety concerns about his wired AC electricity, he had also demonstrated the possibility of wireless electricity. Subsequent installation and success of electric generators at the Niagara Falls by Tesla and Westinghouse proved to be the decisive victory over Edison’s DC systems; Tesla had won the Battle of Currents over Edison. 

Lesson Two: Keep your aims high; give a positive direction to your anger and frustration. Rather than fighting trivial battles, strive to contest and win bigger wars. Despite his negative experiences with Edison, Tesla chose to battle in the field rather than blaming Edison for his miseries. 

Tesla’s triumphs with AC induction motors and Niagara Falls project were still fresh when a tragedy befell: on the inauspicious morning of March 13, 1895, Tesla learnt that his laboratory located on West Broadway had burnt to ground over night. Within a span of few hours, he had lost his years of research and hard work. 

It is thought that experiments involving production of liquid oxygen could have caused the disaster. However, the consequences were much more fateful than the causes. Not only had Tesla never prepared for such a situation, he had not bothered to take insurance for the building and the equipment. Consequently, the calamity caused him a major intellectual as well as financial loss. 

Lesson Three: Never underestimate the vulnerability of your business. Always keep a disaster management plan in place. Tesla was so busy in imagining and experimenting with his ideas that he didn’t think the unthinkable and eventually got a major blow.

Subsequent to his lab’s destruction, Tesla found him struggling to cope with the aftermath; on the other hand, his partnership with Westinghouse was about to run its course. He had no choice but to find new investors. The trouble was that most of his ideas, despite being brilliant, were so grandiose that investors were often skeptical about spending huge amounts of money.

Tesla’s power tower mentioned in the beginning was not the only project that failed due to lack of funding. In 1898, at the first Electrical Exhibition in Madison Square Garden, Tesla demonstrated the first remote-controlled boat and advocated for its numerous applications including military potential but there were no takers. 

Many of Tesla’s ideas were so far ahead of his time that no one was able to grasp their limitless potential. Thus they remained limited to his imagination and could never be materialized. 

Lesson Four: Try to turn your ideas into commercially viable projects or they will remain nonsensical sparks of brilliance just like many of Tesla’s ideas. It is better to start small and gradually upgrade than starting big and failing due to lack of resources.

In 1897, Tesla filed his fundamental radio patent. But when Guglielmo Marconi sent the first transatlantic radio communication in December 1901, it started off a series of legal battles that would last decades. Tesla responded to the situation by saying:

“ Marconi is a good fellow. Let him continue. He is using 17 of my patents.”

While the legal battles continued for next forty years, Marconi reaped plenty of financial gains; on the contrary, Tesla spent the better part of his remaining life struggling to make ends meet. It wasn’t until 1943, eight months after Tesla’s death, that the United States Supreme Court finally ruled that Tesla’s fundamental radio patent was to be upheld.

Lesson Five: Don’t expect to win all the battles in your career; be ready to loose some of them, fairly or unfairly.  The posthumous acknowledgement of Tesla’s radio invention meant nothing to his financial struggles. The world may treat you unfairly as it happened to Tesla; that is the way it has always been, and always will be. Keep a plan B ready. 

Though he could not gain the appreciation he deserved, Nikola Tesla was granted more than 250 patents across 24 countries. Apart from his contributions to electricity, he was the inventor of car sparkplugs, remote controls, wireless communication systems and numerous other devices. However, his dream of wireless electricity remains elusive till date.