Five Professional Lessons from Newton’s Scientific Career

HE WAS BORN THREE MONTHS AFTER HIS FATHER’S DEATH. Named after his late father – Isaac Newton – his life started as a solitary child. When he was three years old, his mother married for the second time and moved with her new husband, leaving him to the care of his grandparents. When he was eleven, his stepfather passed away and his mother returned along with a couple of half siblings.  

Although a bright child, Isaac was often inattentive in school. When he turned seventeen, his mother took him out of school hoping that he will be more successful as a farmer. Fortunately, her assessment didn’t prove to be true; when sent out to look after the sheep, he spent the day designing ingenious mechanical devices instead of tending the cattle. Eventually, his mother had to renounce her thoughts and send her back to school.

In 1661, Newton entered Trinity College at Cambridge. During those times, Cambridge was almost entirely reserved for the sons of the aristocracy, which Newton was obviously not. Moreover, his mother, though not lacking in means, was not willing to spend much on his education. Consequently, he had to earn his keep by performing menial tasks for fellows from affluent families. More than three centuries after, no one knows the names of those affluent nobles while Isaac Newton is still hailed as the most influential scientist that ever walked the planet. 

Lesson One: Do not let the external circumstances dictate your career choices. Newton had a turbulent childhood­ – he could have ended as a farmer as his mother desired. But he was persistent in his craving for scientific knowledge. If you have a specific motive in your personal or professional life and the odds seem to be against you, don’t give in; just remain determined with your goals.  

In the year 1664, plague broke out in Britain. The epidemic was so severe that Cambridge University was forced to close its doors. Most of the students would have taken it as an opportunity to ease off on studying a bit. However, Newton was no ordinary student. He returned home but continued his scientific research with fervor.  During this period, Newton conducted various experiments focused on optics and motion; these leisurely studies laid the foundation for his later scientific achievements. 

Lesson Two: Make the best use of the free time available to you. Upon closure of the university, Newton could have spent his time playing and rejoicing but he valued time as a precious resource. Time is probably the most precious personal resource in your life. In fact, life itself is time; your life is primarily the time allotted to you for living in this world. So learn to appreciate its value and utilize this limited personal resource to further your desired goals.

Between his twenty-first and twenty-seventh years, Newton had laid the foundations for the scientific theories that subsequently revolutionized the world. But he was always reluctant to publish his results. Thus, many of his theories were not made public until much later. Principia, arguably the most significant piece of scientific work, had to wait for two decades before publication; and that too upon strong persuasion from Sir Edmund Halley – the Halley Comet fame and a contemporary of Newton.

Despite being brilliant himself, newton feared criticism from other scientists and made every effort to avoid controversy. Perhaps the insecurities from his flustered upbringing were still ingrained in the youngster’s brain, ruining his abilities to confront the world with confidence. Ironically, his tendency to avert disputes led to a major intellectual controversy that could have deprived him from one of his foremost credits – the invention of integral calculus – the mathematical study of change.

In 1669, Newton wrote a paper delineating the fundamentals of calculus. Nonetheless, it was not published until 1711– a gap of 42 years! Incidentally, Gottfried Wilhelm Leibniz, a German mathematician, published his work on calculus in 1886 and claimed the invention. Upon this, Newton declared that he had invented it much earlier and Leibniz had merely stolen his ideas. Today the common wisdom is that both great mathematicians invented the field independently. 

 
Lesson Three: Be assertive with your ideas and don’t hesitate to express them to the world. Newton was so afraid of being confronted that he always avoided publication of his concepts. Had Edmund Halley not persuaded him; Principia might have never been published – the world could have been a much darker place. So folks, open your thoughts to other people; let them disagree and criticize. This may seem intimidating at first blush, but it will lead you to a path of growth and development. 

Leibniz was not the only rival that Newton’s popularity earned him. By 1672, the Royal Society –the most eminent scientific institution in Britain – got wind of Newton’s brilliance and invited him to publish his work on light and color. In this paper, Newton posited that light is composed of particles. This was a radical notion for many at the Society; one of its members named Robert Hook– often credited with the discovery of living cells­– led the pack of skeptics and called Newton’s results a mere “hypothesis”.

After weathering the criticism for a couple of months, Newton bent his back on finding mathematical proofs for his theories. Though the two scientists remained adversaries till Hook’s demise in 1703, the constant pressure from Hook on Newton forced him to bring significant mathematical refinements in his scientific concepts. Thus, in a way, Robert Hook proved to be a friend rather than a foe. 

Lesson Four: Try to find friends in your foes. Those who criticize or belittle you are mostly viewed as your enemies, and they often are. Robert Hook criticized Newton’s ideas but Newton used that criticism as an opportunity to improve his work. If people laugh at your presentation, don’t drown yourself in a river of embarrassment. Rather identify what made them laugh and improve on that. Easier said than done, but definitely worth practicing.  

Newton’s lifetime was a period of great scientific upheaval. Though scientists like Copernicus and Galileo had shunned the misconceptions of ancient scientific thought, science as a knowledge was more of a loose assortment of seemingly unrelated facts.  Besides, pure science was often viewed as a plaything of intellectuals and no one believed if it could be of any practical significance. 

It was Isaac Newton who, building upon the works of his predecessors –Descartes, Galileo, Copernicus– supplied a unified theory that could make scientific predictions, and subsequently be applied to bring about the technological revolution that seems so mundane to us today. Newton himself realized and acknowledged the importance of the foundations laid by his forerunners. In his own words,

“If I have seen further than others, it is because I have been standing on the shoulders of giants.”

Lesson Five: Never hesitate to learn from others’ ideas. Newton studied the concepts of his precursors and then synthesized them to build the unified theory that led to the scientific and technological advances. Following the footsteps of Newton, dear readers, don’t hesitate to learn from seniors and peers and upon that learning, construct the building of your own ideas.  And yes, don’t forget to acknowledge the contribution of people from whom you learn.

Newton was knighted and died a superstar in 1731. His theories received unanimous acceptance across the world, until Albert Einstein appeared on the scene beginning of twentieth century.